
Stöchiometrie

1. Überblick: Quantitätsgrößen und Umrechnungsgrößen

2. Quantitätsgrößen: Angabe, welche Menge eines Stoffes vorliegt

Quantitätsgröße für eine Stoffportion	Symbol für die Quantitäts- größe	Einheit	Symbol für die Einheit
Masse	m	Gramm	g
Volumen	V	Liter	l bzw. L
Teilchenzahl	N	Teilchen	kein Symbol
Stoffmenge	n	(das) Mol	mol

Anmerkung: "(X)" nach einem Symbol für eine Größe bedeutet, dass sich die Größe auf einen bestimmten Stoff X bezieht, z. B. ist m (C) die Masse einer bestimmten Stoffportion von Kohlenstoff.

3. Umrechnungsgrößen (bei Normalbedingungen): Größen, um Mengen ineinander umzurechnen

Umrechnungsgröße zur Umrechnung	Symbol für die Umrechnungsgröße	Einheit evtl. Zahlenwert	Symbol für die Einheit
Dichte	ρ	Gramm/Milliliter Gramm/Kubikzentimeter	g/ml bzw. g/mL g/cm³
Molare Masse	M	Gramm/Mol	g/mol
Molares Volumen	V _m	22,4 Liter/Mol	22,4 l/mol bzw. L/mol
Avogadro-Konstante	N _A	6,022 · 10 ⁻²³ 1/Mol	6,022 · 10 ⁻²³ 1/mol
Atommasse	m _a	Unit	u
Molekülmasse	m_{m}	Unit	u

4. Formeln zur Umrechnung

Masse m in Volumen V:	Masse m in Stoffmenge n:	Volumen V in Stoffmenge n (nur bei Gasen):
$m(X) = \rho(X) \cdot V(X)$	$m(X) = M(X) \cdot n(X)$	$V(X) = V_m \cdot n(X)$
Teilchenzahl N in Stoffmenge n:	Masse m in Teilchenzahl N bei Atomen:	Masse m in Teilchenzahl N bei Molekülen:
$N(X) = N_A \cdot n(X)$	$m(X) = m_a(X) \cdot N(X)$	$m(X) = m_m(X) \cdot N(X)$